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ABSTRACT: Introduction: In epidemiological studies, misclassification error, especially differential 
misclassification, has serious implications. Objective: To illustrate how differential misclassification error (DME) 
and non-differential misclassification error (NDME) occur in a case-control design and to describe the trends 
in DME and NDME. Methods: Different sensitivity levels, specificity levels, prevalence rates and odds ratios 
were simulated. Interaction graphics were constructed to study bias in the different settings, and the effect of  
the different factors on bias was described using linear models. Results: One hundred per cent of  the biases 
caused by NDME were negative. DME biased the association positively more often than it did negatively (70 
versus 30%), increasing or decreasing the OR estimate towards the null hypothesis. Conclusions: The effect 
of  the sensitivity and specificity in classifying exposure, the prevalence of  exposure in controls and true OR 
differed between positive and negative biases. The use of  valid exposure classification instruments with high 
sensitivity and high specificity is recommended to mitigate this type of  bias.
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INTRODUCTION

Case-control studies are commonly utilized, especially for studying rare diseases1-3. Both 
case identification and control selection should be carried out with the greatest possible 
rigor. Lack of  rigor could lead to systematic errors and consequently to invalid results3. 
Similarly, if  the exposure, the disease or both are misclassified, the association measures, 
the odds ratio (OR) and the conclusions will be biased1. In any epidemiological study, the 
inappropriate classification of  the exposure or of  the disease is known as misclassification 
error, which can be divided into two types: non-differential misclassification error (NDME) 
or differential misclassification error (DME). This type of  error is usually found in studies 
that investigate socially unacceptable behaviour or behaviours considered private that can 
generate shame or stigma4, such as sexual behaviour or the use of  psychoactive substances5. 
It is known that NDME biases the risk estimate (typically represented by an odds ratio in 
case-control studies) towards the null hypothesis2,6-11. The behavioural trends of  NDME have 
been extensively described, but DME trends are not yet clear12. Consider a 2 x 2 contingency 
table in any type of  epidemiological study that represents the results observed among 
non-diseased and diseased individuals as a function of  the exposure variable, where a and 
b represent, respectively, the number of  diseased and non-diseased exposed individuals 
and c and d represent the number of  diseased and non-diseased unexposed individuals, 
respectively. Exposure misclassification error occurs when the diseased group and the 
non-diseased group are considered to be exposed although they were not and unexposed 

RESUMO: Introdução: Em estudos epidemiológicos, o erro de classificação, especialmente o diferencial tem sérias 
implicações. Objetivo: Explicar como se expressa o erro de classificação diferencial (ECD) e não diferencial (ECND) 
em um estudo de caso-controle e descrever padrões de comportamento. Métodos: Simularam-se diferentes níveis 
de sensibilidade, especificidade, prevalência e odds ratio (OR). Construíram-se gráficos de interação para estudar o 
comportamento do viés nos diferentes cenários e mediante modelos lineares se descreveu o efeito dos diferentes 
fatores sobre esse viés. Resultados: O 100% dos vieses apresentados ante um ECND foram negativos, enquanto que 
no caso do ECD observou-se que este enviesa a associação positivamente em maior proporção que negativamente 
(30 versus 70%), aproximando ou afastando a estimação da OR para a hipótese nula. Conclusões: O efeito da 
sensibilidade e a especificidade na classificação da exposição, da prevalência da exposição nos controles e da OR 
verdadeira sobre o viés relativo difere entre os vieses negativos e positivos. O uso de instrumentos de classificação da 
exposição validados, com altos níveis de sensibilidade e especificidade, se recomendam para mitigar esse tipo de viés.
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Simulação por computador.
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although they were6, 12. A similar situation would occur if  error arose in the classification 
of  the disease. Equations 1 to 4 show how misclassification error affects the frequencies in 
the 2 x 2 table. These equations have been derived by us using equation 9 from the Vogel 
and Geffeller paper13.
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D
) Eq. (1)
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N
) Eq. (2)
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d’=b(1-Se
N
)+dSp
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In these equations, a and a’ indicate, respectively, the true and observed numbers of  
diseased persons exposed, b and b’ the true and observed numbers of  non-diseased exposed, 
c and c’ the true and observed numbers of  diseased unexposed, and d and d’ the true and 
observed numbers of  non-diseased unexposed. SeD and SeN represent the sensitivity of  
classifying those truly exposed among the diseased (SeD ) and non-diseased (SeN), and SpD 
and SpN are the specificities for classifying those truly unexposed among the diseased (SpD) 
and non-diseased (SpN). The reasoning behind these equations is that the group of  diseased 
individuals will include a percentage of  truly exposed subjects (a) who will be classified as 
such by a certain instrument (laboratory test, survey, etc.). This percentage corresponds to 
the sensitivity of  the instrument for classifying subjects as exposed (SeD). In addition, some 
of  the individuals who were truly not exposed (c) will be classified by the instrument as 
exposed. This percentage represents the instrument’s false positive rate (1 – SpD). Therefore, 
among diseased individuals, the number of  subjects classified by the instrument as exposed 
(1– SpD) will be equal to the fraction of  individuals correctly classified, aSeD, in addition 
to the fraction of  individuals incorrectly classified, c(1 – SpD). Similarly, the number of  
diseased subjects classified by the instrument as unexposed (c’) is equal to the fraction of  
individuals correctly classified as such, cSpD , plus the fraction of  individuals incorrectly 
classified, a(1 – SeD). Likewise, the number of  subjects classified as exposed and unexposed 
by an instrument in a non-diseased population (b’ and d’) is determined by the sensitivity 
and specificity of  the instrument in that population (SeN and SpD). The subjects classified 
as exposed (b’) will correspond to the fraction of  individuals correctly classified, bSeN, plus 
the fraction of  individuals incorrectly classified d(1 – SpN). Similarly, the subjects classified 
as unexposed (d’) will equal the fraction of  individuals correctly classified, dSpN, added to 
the fraction of  individuals incorrectly classified, b(1 – SeN).

Non-differential misclassification error occurs when SeD = SeN and SpD = SpN, otherwise, 
the bias is considered a differential misclassification error12. The true odds ratio is OR= ad/cb, 
and the observed or estimated odds ratio is OR’ = a’d’/c’b’. If  the sensitivities and specificities 
in non-diseased and diseased individuals are equal to 100%, the true odds ratio is equal to the 
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observed (OR = OR’), and if  they are equal to 50%, the observed odds ratio will be equal to 
(OR’ = 1). A similar situation would occur with other risk measures employed in different 
epidemiological designs. Using equations 5 to 8, it is possible to use the true table frequencies 
to replace the corresponding sensitivities and specificities for the following formulas derived 
(also by the authors) from the equations described above:
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If  the sensitivities and specificities of  the instrument employed for classifying exposed/
unexposed individuals (non-diseased as well as diseased) are known, then researchers can 
correct this type of  error. However, this is not always possible. Therefore, in this article, the 
effect of  misclassification error (differential and non-differential) on odds ratio estimates is 
simulated using a case-control design. This effect is simulated as a function of  the sensitivity 
and specificity of  the exposure classification given different prevalence rates of  the exposure 
among the controls and different true ORs to describe how misclassification error occurs 
and to identify possible trends. These trends may guide the discussion of  results in this type 
of  studies when there are deficiencies in the classification instruments.

MATERIALS AND METHODS

OUTCOME

The OR was utilized as the measure of  risk in our case-control study, and the observed 
value was calculated using a 2×2 table. To study the effect of  misclassification error on 
the estimation of  the OR, we used different scenarios with variations in the sensitivity and 
specificity of  the exposure classification for cases and controls, the prevalence of  the exposure 
among the controls and the OR. The effect was measured according to the bias produced by 
varying these parameters. By definition, bias is the difference between the estimated OR and 
the true OR14. Relative bias (expressed as a percentage) is the quotient between this difference 
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and the true OR (expressed in hundreds). Negative bias values indicate underestimates of  
the OR, and positive bias values indicate overestimates. Likewise, bias values close to zero 
indicate the absence of  bias.

STUDY DESIGN

Simulation studies employed in various areas of  research are very useful to understand the 
behaviour of  certain phenomena under different virtual scenarios prompted by researchers 
through some specialized software. In statistical robustness studies these are very common 
to observe the behaviour of  an estimator under different scenarios that could occur in 
reality. Given the similarity between the simulation studies and experimental studies, this 
last approach is used to quantify the effect of  misclassification in case-control studies15. 
For this, we have considered six factors:

1. the sensitivity of  the exposure classification among the cases;
2. the specificity of  the exposure classification among the cases;
3. the sensitivity of  the exposure classification among the controls;
4. the specificity of  the exposure classification among the controls;
5. the prevalence of  the exposure among the controls; and
6. the odds ratio.

There were five levels for factors 1 – 4 (0, 25, 50, 75 and 100%) and two levels for factors 
5 – 6 (5 and 30% for the prevalence and 2 and 7 for the OR). A total of  2,500 scenarios were 
generated (45 x 22). One hundred of  these scenarios comprised the NDME analysis because 
the factors 1 and 3 levels as well as the factors 2 and 4 levels were the same. Therefore, the 
number of  factors considered in this analysis was reduced to four. The remainder of  scenarios 
(n = 2,400) made up the DME analysis, conserving the six initially stated factors. 

STATISTICAL ANALYSIS

Interaction graphics were used to study relative bias as a function of  the factors that 
varied, estimating the median bias for each group of  combinations. Using linear models, 
the effect of  the varying factors (i.e., the explanatory variables) on relative bias (i.e., 
the outcome variable) was studied, using a 0.05 level of  statistical significance. Because 
positive relative bias occurred only with DME, which presented a high level of  variability, 
the DME analyses were stratified according to the sign of  the bias. Because of  the high 
variability, a natural logarithmic transformation was used for the DME outcome in the 
linear models. Given the complexity of  the DME results, in a subsequent analysis of  this 
type of  misclassification error, we considered OR estimates with absolute relative bias 
less than 15% as having no bias or moderate bias. This cut-off  was the minimum value 
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close to 0% which yielded an adequate sample size to do comparisons. For this analysis, 
we created a categorical variable with three levels:

1. Negative bias or underestimation of  the OR (relative bias values smaller than -15%);
2. Bias absent (bias values greater than -15% but less than 15%); and
3. Positive bias or overestimation of  the OR (bias values greater than 15%). 

Spearman’s correlation coefficient was used to assess the relationships between the different 
levels of  the DME analysis factors and positive, absent or negative bias. P-values less than or 
equal to 0.05 were considered significant. The R statistical package (R CoreTeam (2013). R: A 
language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/) was utilized for 
generating the scenarios, producing the results of  the simulation and conducting the data 
analyses. R scripts are available on request from the corresponding author.

RESULTS

NON-DIFFERENTIAL MISCLASSIFICATION ERROR 

The bias attributable to NDME was negative in the whole 100 scenarios and very negative in 
many cases, indicating that in the presence of  NDME in a case-control study, the risk is always 
underestimated, even beyond the null hypothesis (OR = 1). In extreme cases of  NDME, the 
OR becomes the inverse of  the true odds ratio if  the sensitivity and specificity of  the exposure 
classification tend towards 0%, it approaches one if  the sensitivity and specificity of  the exposure 
classification tend towards 50% and it tends towards the true OR if  the sensitivity and specificity of  
the exposure classification tend towards 100% (Figures 1A and 1B). On the other hand, when the 
specificity of the exposure classification is 100% and the sensitivity is 0%, the OR is underestimated, 
but never drops below the value that corresponds with the null hypothesis (OR = 1). If  the 
specificity tends towards 0%, even if  the sensitivity is high, the OR is underestimated below the 
level of  the null hypothesis (Figures 1A and 1B). According to the simulations we conducted, 
when the specificity level is higher than the sensitivity level, an unbiased estimate of  the OR is 
produced (p-value for the interaction between sensitivity and specificity = 0.014).

When the exposure prevalence among the controls was high and the sensitivity of  the 
exposure classification was 100%, the OR estimate tended to be unbiased in the presence of  
NDME. When the sensitivity was lower, the exposure prevalence showed no effect (p-value for 
the interaction between sensitivity and prevalence = 0.20) (Figures 1C and 1D). The opposite 
effect was observed when we evaluated the relative bias by combining the specificity of  the 
exposure classification with the prevalence of  the exposure among the controls (p-value for 
interaction between specificity and prevalence = 0.52) (Figures 1E and 1F). Finally, we observed 
less bias in the estimates of  moderate odds ratios. The relative bias increased when the true 
OR was greater, independent of  the sensitivity and specificity (p-values for interaction between 
sensitivity versus OR and specificity versus OR = 0.88 and 0.13, respectively) (Figures 1G and 1H).
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Se: sensitivity. Sp: specificity. Lines represent levels 100% (continuous), 75% (short discontinuous), 50% (dots), 25% 
(dot-discontinuous) and 0% (large discontinuous) of Se and/or Sp.
Relative biases below horizontal line are underestimates beyond the null hypothesis (odds ratio = 1): -50% for a true 
odds ratio equal to 2 (graphs A, C and E), and -86% for a true odds ratio equal to 7 (graphs B, D and F).

Figure 1. Relative bias of the risk estimation (Odds Ratio) in a case-control study under the effect 
of non-differential misclassification error according to different levels of sensitivity and specificity 
of exposure classification, exposure prevalence in controls and true odds ratio. (A, C and E) 
correspond to the median of relative bias of a true odds ratio = 2; and (B, D and F) of a true OR = 7.
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DIFFERENTIAL MISCLASSIFICATION ERROR

Of the 2,400 scenarios in the ECD analysis, 767 (32%) overestimated (i.e., positive bias) and 
1,633 (68%) underestimated (i.e., negative bias) the true odds ratio. As opposed to the NDME 
analysis, the results of  the DME are complex, not only because of  the number of  factors involved 
in the simulations but also because they do not produce a trend that clearly describes the effect 
of  DME in relation to the combinations of  factors. Therefore, the DME analysis is presented 
in a discriminatory manner according to the type of  bias: negative or positive. Figures 2 to 4 
correspond to the medians of  the relative biases for different combinations of  the six factors 
included in this analysis. High levels of  sensitivity and specificity of  the exposure classification 
among the cases (SeCa and SpCa, respectively) reduce the bias, but they reduce positive bias 
more than negative bias (Figures 2A and 2B). A similar effect is observed for the sensitivity 
and specificity of  the exposure classification among the controls (SeCo and SpCo, respectively), 
although the effect is less clear for SeCo (Figures 3A and 3B). With regard to the prevalence 
of  the exposure among the controls, the bias is lower when the exposure prevalence is high, 
independent of  the sensitivity or specificity of  the exposure classification, both for the cases 
and for the controls (Figures 2C to 2F and 3C to 3F). Regarding the specificity, the effect was 
the opposite of  that observed for NDME. When the levels of  sensitivity and specificity were 
combined with the levels of  the true ORs for the cases and the controls, no clear pattern of  
bias was observed (Figures 2G, 2H, 3G and 3H). After combining SeCa, SpCa, SeCo and SpCo, we 
observed that the bias decreased with high levels of  specificity more than with sensitivity in 
both the cases and the controls. However, these trends were not very clear (Figures 4A to 4H).

Table 1 presents the negative, absent or positive bias associated with DME according to each factor. 
Negative bias percentages decreased with high levels of SeCa and SpCo (Spearman’s p-values = 0.017). In 
the other cases, the negative bias percentage increased. The complete opposite occurred with positive 
bias. The absence of bias was invariably observed for varying levels of sensitivity and specificity of the 
exposure classification among the cases and the controls (Spearman’s p-values > 0.05). A high exposure 
prevalence among the controls was correlated with increased percentages of absent and negative 
bias and with a decreased percentage of positive bias, but these were not significant (Spearman’s 
p-values = 1). High ORs were associated with an increase in negative bias and a decrease in positive 
and absent bias, but these results were not significant (Spearman’s p-values = 1).

DISCUSSION

In research in general and in epidemiological research in particular, different forms 
of  bias are frequently present and lead to findings that do not reflect precisely what is 
occurring. Biases are the result of  deficiencies in the determination of  the sample size, 
representativeness, data collection, definitions of  relevant variables or design. The best-
known biases in epidemiological research are selection, survival, loss to follow-up, detection, 
recall, inclusion/exclusion, confounding and misclassification16. 
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Ca: cases. Se: sensitivity. Sp: specificity. Lines represent levels 100% (continuous), 75% (short discontinuous), 50% 
(dots), 25% (dot-discontinuous) and 0% (large discontinuous) of Se and/or Sp.

Figure 2. Relative bias of the risk estimation (odds ratio) in a case-control study under the effect 
of differential misclassification error according to different levels of sensitivity and specificity of 
exposure classification in cases, exposure prevalence in controls and true odds ratio. (A, C and E) 
correspond to negative biases (B, D and F) to positive biases. 
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Co: controls. Se: sensitivity. Sp: specificity. Lines represent levels 100% (continuous), 75% (short discontinuous), 50% 
(dots), 25% (dot-discontinuous) and 0% (large discontinuous) of Se and/or Sp.

Figure 3. Relative bias of the risk estimation (Odds ratio) in a case-control study under the effect 
of differential misclassification error according to different levels of sensitivity and specificity of 
exposure classification in controls, exposure prevalence in controls and true OR. (A, C and E) 
negative biases; (B, D and F)  positive biases. 
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Ca: cases. Co: controls. Se: sensitivity. Sp: specificity. Lines represent levels 100% (continuous), 75% (short 
discontinuous), 50% (dots), 25% (dot-discontinuous) and 0% (large discontinuous) of Se and/or Sp.

Figure 4. Relative bias of the risk estimation (Odds ratio) in a case-control study under the effect 
of differential misclassification error according to different levels of sensitivity and specificity of 
exposure classification defined for both cases and controls, exposure prevalence in controls and 
true odds ratio. (A, C and E) negative biases; (B, D and F) positive biases. 
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Table 1. Percentages of negative bias, lack of bias (absolute relative bias less than 15%) and 
positive bias of the estimated odds ratio in case-control studies under the effect of differential 
misclassification error.

Factor
Negative bias Lack of bias Positive bias

n % n % n %

Sensitivity (Ca)

0% 381 79.4 15 3.1 84 17.5

25% 363 75.6 13 2.7 104 21.7

50% 333 69.4 19 4.0 128 26.7

75% 294 61.3 20 4.2 166 34.6

100% 221 46.0 16 3.3 243 50.6

r/p-value -1/0.017 0.6/0.35 1/0.017

Specificity (Ca)

0% 175 36.5 19 4.0 286 59.6

25% 268 55.8 28 5.8 184 38.3

50% 334 69.6 18 3.8 128 26.7

75% 383 79.8 13 2.7 84 17.5

100% 432 90.0 5 1.0 43 9.0

r/ p-value 1/0.017 -0.9/0.083 -1/0.017

Sensitivity (Co)

0% 273 56.9 17 3.5 190 39.6

25% 299 62.3 17 3.5 164 34.2

50% 319 66.5 18 3.8 143 29.8

75% 340 70.8 16 3.3 124 25.8

100% 361 75.2 15 3.1 104 21.7

r/ p-value 1/0.017 -0.67/0.219 -1/0.017

Specificity (Co)

0% 458 95.4 4 0.8 18 3.8

25% 421 87.7 7 1.5 52 10.8

50% 359 74.8 25 5.2 96 20.0

75% 259 54.0 34 7.1 187 39.0

100% 95 19.8 13 2.7 372 77.5

r/ p-value -1/0.017 0.7/0.233 1/0.017

Prevalence

5% 766 63.8 23 1.9 411 34.3

30% 826 68.8 60 5.0 314 26.2

r/ p-value 1/1 1/1 -1/1

Odds ratio

2 692 57.7 47 3.9 461 38.4

7 900 75.0 36 3.0 264 22.0

r/ p-value 1/1 1/1 -1/1

Ca: cases. Co: controls. r: Spearman correlation coefficient.
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Misclassification bias refers to errors made when classifying an individual into a certain 
group, such as diseased individuals or individuals exposed to a certain factor. It occurs when 
non-validated instruments are used and the sensitivity and specificity of  the classification 
method is unknown. Misclassification errors act in a particular direction, positive or negative17, 
underestimating or overestimating the true value of  the association measure, such as the relative 
risk (RR) in cohort studies, the hazard ratio (HR) in longitudinal studies and the odds ratio (OR) 
in case-control studies. Misclassification error can be differential or non-differential. When DME 
occurs, the sensitivity and/or the specificity of  the classification of  the subjects are different 
among comparison groups3. NDME results in a decrease in statistical power (i.e., the ability 
of  a test to show an association when one really exists), biasing the value of  the OR towards 
the null2,6-11. DME biases the association either towards or away from the null hypothesis12. 
The majority of  the time, it is impossible to predict the direction of  the bias because of  the 
complex framework involving differences in sensitivity, specificity and exposure prevalence 
between the cases and the controls. Although Chyou18 claims to have found patterns of  the 
effect of  DME, such patterns are described only for certain pre-established scenarios and not 
for a general scenario as our study intended to. In fact it is one of  the limitations Chyou refers 
in his paper18. Of  course, one aspect to highlight in the description of  DME is that there is a 
strong influence of  the prevalence of  exposure as well as the estimated effect size. In practice, 
DME often arises when surveys are administered because it is possible that cases have better 
memory of  the exposure than the controls, which have less motivation to remember. These 
surveys do not always prompt completely true responses, not because an individual intended to 
lie but because the individual cannot recall their exposure history3. The immediate consequence 
is that when the exposure classification is determined, false positives or false negatives arise19. 

This simulation study analyzed the bias in an odds ratio estimate generated in the presence 
of  DME and NDME in a case-control design for different levels of  sensitivity (Se) and specificity 
(Sp) of  the exposure classification (in the cases and the controls), the exposure prevalence 
among the controls and the true OR. The NDME analysis was simpler than the DME analysis 
because it was possible to observe easily interpretable trends. In the simulation, we found 
that 100% of  the bias produced by the NDME in estimating the OR is negative, weakening 
the association and driving the estimation of  the risk measure towards the null hypothesis. 
In addition, we found that the unbiased OR estimates in the presence of  NDME are achieved 
faster at higher levels of  specificity compared with sensitivity. This could be a consequence 
in the selection of  strategies to classify individuals, preferring those with a greater chance 
of  exclude the presence of  the studied event (i.e. more specific). DME biases the association 
positively or negatively, driving the OR estimate towards or away from the null hypothesis 
with great uncertainty. This situation, in which the magnitude of  the association is under- 
or overestimated, leads researchers to affirm associations that do not truly exist or, on the 
contrary, to affirm their non-existence when they are actually present. This could have serious 
implications for the generation of  new knowledge to reporting opposite effects devoid of  
plausibility. In fact, to give an example, this could be a plausible explanation for the protective 
effect of  cigarette use in breast cancer in certain studies19. Therefore it should be ideal that 
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researchers question how cigarette use has been measured and then implement better 
approaches such as measurements of  metabolites in blood or hair, avoiding then self-report20. 

In this simulation, it was determined that the DME of  the exposure in a case-control study 
produces positive bias, which is lower compared with the quantity of  negative bias (30 versus 
70%). However, the positive bias is highly variable and reaches unexpected sizes (as high as 
50,000%). Another important finding of  this study is that the effect of  the factors (sensitivity 
and specificity of  the exposure classification, the exposure prevalence among the controls, 
true OR) on relative bias is completely different for positive bias than for negative bias. There 
were no similarities between the two types of  bias, and the bias seemed to be affected by all 
of  the factors at the same time and not independently, which would indicate a high degree of  
interaction between them. These interactions are difficult to interpret using graphics because 
they only describe two-order interactions. However, the linear models revealed second-, third-, 
fourth-, and fifth-order significant interactions (data not shown). Of  the 57 possible interactions 
in the DME analysis, 22 (39%) were significant for negative bias and 27 (47%) for positive bias, 
showing the degree of  complexity in this analysis in comparison to the NDME analysis, which 
only revealed two significant interactions among the 11 possible interactions (18%). 

Our analyses were based on the variation of  the sensitivity and specificity of  the 
classification of  an event of  interest. However, we recognize that there are other approaches 
which additionally include the predictive value of  the classification methods such as the one 
Marshall21 proposed. Even so, we believe that the approach presented by us is useful for 
understanding the effects of  the limitations in terms of  sensitivity and specificity and even 
more useful because researchers could easily find explanations for the lack of  associations 
or implausible findings through systematic reviews about the limitations of  the instruments 
used by them. Although knowledge of  prior information such as sensitivity and specificity 
of  the exposure classification could allow researchers to detected misclassification bias22 and 
correct it23,24, we insist that is very useful to be aware about the effects of  misclassification 
and how these could be avoided if  researchers validate the methods of  classification. As with 
any other type bias, it will always be best avoid bias rather than having to correct it.

CONCLUSION 

It is likely that a misclassification error will occur if  the sensitivity and specificity of  any 
instruments used to compare groups are not exactly 100%. If  this type of  error occurs, it 
is preferable if  it is non-differential. In cases of  NDME, there is equilibrium in the bias, and 
the explanation of  the study results is easier. In a case-control study, it is important to pay 
close attention not only to the identification of  cases and to the appropriate selection of  
controls but also to the classification of  the exposure. Thus, the use of  validated classification 
instruments is emphasized so that instruments with high sensitivity and high specificity are 
selected. The design of  the instrument and the appropriate formulation of  the questions 
on a questionnaire are key components for avoiding DME. It is therefore important that 
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epidemiologists and researchers are close not only to the elaboration and design of  surveys, 
but also to the monitoring of  the quality with which these are applied as well as the quality 
control of  other classification procedures and tests laboratory and/or diagnostic tests. 

SOFTWARE

Scripts in the form of  R code are available on request from the corresponding author.
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