

# PROGRAMA OFICIAL DE CURSO (Pregrado y Posgrado)

## UNIVERSIDAD DE ANTIOQUIA

| 1. INFORMACIÓN GENERAL                                                                          |                           |  |
|-------------------------------------------------------------------------------------------------|---------------------------|--|
| Unidad Académica: Corporación Ciencias Básicas Biomédicas                                       |                           |  |
| Programa académico al que Maestría-Doctorado pertenece:                                         |                           |  |
| Programas académicos a los cuales se ofrece el curso: Maestría                                  | y Doctorado               |  |
| Vigencia:         2024-01           Cód                                                         | digo curso: 8501-708      |  |
| Nombre del curso: Biología celular y molecular                                                  |                           |  |
| Área o componente de formación del currículo: Básica                                            |                           |  |
| Tipo de curso:  Créditos académicos¹:  9 calculo_horas_x_cre dito_xlsx                          |                           |  |
| Características del curso: Validable ⊠ Habilitable □ Clasificable □ Evaluación de suficiencia □ |                           |  |
| Modalidad del curso: Presencial                                                                 |                           |  |
| Pre-requisitos: No                                                                              |                           |  |
| Co-requisitos: No                                                                               |                           |  |
| Horas docencia directa: 108 Horas de trabajo independiente : 324                                |                           |  |
| Horas totales del curso: 432                                                                    |                           |  |
| Coordinador del curso: Andrés Baena García  Correo electronica andres.baena                     | rónico:<br>ag@udea.edu.co |  |
| Aula del curso: 234  Horario del curso: Lunes-Miércoles y Viernes de 8-10 am                    |                           |  |

# 2. INFORMACIÓN ESPECÍFICA

## Descripción general y justificación del curso:

La Biología Celular y Molecular surge como una de las más excitantes y productivas áreas del conocimiento científico. Esta área nace de la fusión de tres disciplinas, principalmente la anatomía celular, la bioquímica y la genética, como elemento unificador conceptual, contribuyendo de manera decisiva en el avance del conocimiento científico de la complejidad y el dinamismo celular.

Durante los últimos años, el entendimiento de los eventos moleculares asociados con el funcionamiento celular y organísmico se ha venido nutriendo cada vez más de las denominadas omicas: genómica, transcriptómica, proteómica, y metabolómica, para citar aquellas disciplinas más intensamente utilizadas en la actualidad. Estos

<sup>&</sup>lt;sup>1</sup> El número de créditos y la intensidad horaria debe estar acorde con el plan de estudios del programa para el que fue diseñado el curso.

análisis globales han generado nuevas dimensiones de interpretación de los fenómenos biológicos, complementadas, a su vez, por desarrollos matemáticos, estadísticos y computacionales, que permiten interpretar las complejidades inherentes de la funcionalidad biológica. En conjunto, estos desarrollos han permeado la interpretación biomédica, de tal manera que nuevos métodos pronósticos y diagnósticos son corrientemente utilizados en la práctica médica. La Biología Celular y Molecular surge como una de las más excitantes y productivas áreas del conocimiento científico. Esta área nace de la fusión de tres disciplinas, principalmente la anatomía celular, la bioquímica y la genética, como elemento unificador conceptual, contribuyendo de manera decisiva en el avance del conocimiento científico de la complejidad y el dinamismo celular.

Durante los últimos años, el entendimiento de los eventos moleculares asociados con el funcionamiento celular y organísmico se ha venido nutriendo cada vez más de las denominadas omicas: genómica, transcriptómica, proteómica, y metabolómica, para citar aquellas disciplinas más intensamente utilizadas en la actualidad. Estos análisis globales han generado nuevas dimensiones de interpretación de los fenómenos biológicos, complementadas, a su vez, por desarrollos matemáticos, estadísticos y computacionales, que permiten interpretar las complejidades inherentes de la funcionalidad biológica. En conjunto, estos desarrollos han permeado la interpretación biomédica, de tal manera que nuevos métodos pronósticos y diagnósticos son corrientemente utilizados en la práctica médica.

La Biología Celular y Molecular representa un eje fundamental en la educación moderna, la investigación y la tecnología. Esta disciplina genera oportunidades de conocimiento con gran impacto en nuestra sociedad

## **Objetivo general:**

El curso de biología Celular y Molecular tiene como objetivo presentar un panorama coherente de la función de las células eucarióticas (crecimiento, división y diferenciación), a través de la estructura y funcionamiento molecular de lípidos (membrana celular), ácidos nucleicos (estructura del DNA y RNA, síntesis y participación en la regulación génica, recombinación y reparación del DNA), y proteínas (estructura, función, síntesis y regulación de su expresión).

#### **Objetivos específicos:**

- Explicar y dar ejemplos de cómo las interacciones iónicas, hidrofóbicas y enlaces de hidrógeno determinan la estructura de ácidos nucleicos y proteínas, y modulan la especificidad de las interacciones entre estas moléculas.
- Entender y diferenciar entre diferentes técnicas empleadas en biología molecular para aislar, separar y reconocer proteínas específicas, ácidos nucleicos, y sus interacciones.
- Identificar los métodos experimentales utilizados para resolver aspectos específicos asociados con el funcionamiento de ácidos nucleicos y proteínas.
- Entender los mecanismos de síntesis, replicación y reparación del DNA; transcripción y translación.
- Entender los mecanismos mediante los cuales la topología del DNA y la estructura de la cromatina afectan los procesos de replicación, reparación, recombinación y transcripción, y entender la regulación epigenética de la expresión génica.
- Describir los mecanismos de síntesis y procesamiento del RNA.
- Entender las principales vías de señalización intracelular, su regulación, y asociación con la regulación genética y epigenética.
- Interpretar y discutir datos a partir de artículos de investigación relacionados con los objetivos anteriores.

#### UNIDADES DETALLADAS UNIDAD 1

Contenido:

| Unidad 1 (No. de semanas por | Temas: Fundamentos químicos de | Subtemas: La Química Moderna                    |
|------------------------------|--------------------------------|-------------------------------------------------|
| unidad): 1.33 (8 HORAS)      | las moléculas orgaánicas y     | La estructura del átomo                         |
|                              | biomoléculas                   | # Másico                                        |
|                              |                                | # Atómico                                       |
|                              |                                | Los isótopos                                    |
|                              |                                | • Los Iones                                     |
|                              |                                | Distribución electrónica                        |
|                              |                                | La regla del octeto                             |
|                              |                                | Tipos de enlaces                                |
|                              |                                | La molécula                                     |
|                              |                                | La hibridación                                  |
|                              |                                | Las moléculas como                              |
|                              |                                | paradigma químico:                              |
|                              |                                | • El metano, el dióxido de                      |
|                              |                                | carbono, el agua y la sal (NaCl)                |
|                              |                                | como ejemplos de la lógica                      |
|                              |                                | molecular mediante los conceptos                |
|                              |                                | de: Polaridad, El puente de                     |
|                              |                                | Hidrógeno, El pH, La Solubilidad y              |
|                              |                                | las fuerzas intermoleculares.                   |
|                              |                                | las fuerzas intermoleculares.                   |
|                              |                                | Las Moléculas Orgánicas (Forma y                |
|                              |                                | Función)                                        |
|                              |                                | • La isomería                                   |
|                              |                                | La estereoisomería y su                         |
|                              |                                | consecuencia biológica.                         |
|                              |                                | Los isómeros                                    |
|                              |                                | conformacionales                                |
|                              |                                | Los isómeros                                    |
|                              |                                | configuracionales                               |
|                              |                                | Los enzimas y sus                               |
|                              |                                | implicaciones estereoquímicas                   |
|                              |                                | Introducción a los metabolitos.                 |
|                              |                                | <ul> <li>Los metabolitos primarios y</li> </ul> |
|                              |                                | secundarios                                     |
|                              |                                | • Los metabolitos primarios                     |
|                              |                                | (aspectos estructurales)                        |
|                              |                                | • Carbohidratos                                 |
|                              |                                | • Lípidos                                       |
|                              |                                | • Proteínas                                     |
|                              |                                | Acidos Nucleicos                                |
|                              |                                | - Actuos mucieicos                              |

| Contenido: Describa las unidades o temas y contenidos a desarrollar |                            |                                                          |
|---------------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| Unidad (No. de semanas por unidad): 1.33 (8 HORAS)                  | Temas: Membrana plasmática | <b>Subtemas:</b> 1. Modelo de membrana plasmática        |
|                                                                     |                            | 2. Composición de la membrana                            |
|                                                                     |                            | 3. Lípidos como componentes estructurales de la membrana |

|  | -Ácidos Grasos                                                                                         |
|--|--------------------------------------------------------------------------------------------------------|
|  | -Esfingolipídos                                                                                        |
|  | -Colesterol                                                                                            |
|  | 4. Proteínas de la membrana                                                                            |
|  | 5. Técnicas para el estudio de lípidos<br>y proteínas de membrana                                      |
|  | 6. Transporte a través de membrana                                                                     |
|  | 7. Energética del movimiento de iones a través de la membrana 8. Endocitosis, exocitosis y fagocitosis |

| Contenido: Describa las unidades o temas y contenidos a desarrollar |                              |                                             |
|---------------------------------------------------------------------|------------------------------|---------------------------------------------|
| Unidad (No. de semanas por                                          | Temas: Estructura de ácidos  | Subtemas:                                   |
| unidad): 1.33 (8 HORAS)                                             | nucleicos y estructura de la | Historia de la doble hélice                 |
|                                                                     | cromatina                    | (Griffith 1925, Avery, Macleod et al        |
|                                                                     |                              | 1943, Watson y Crick 1952) y su             |
|                                                                     |                              | significado Biológico                       |
|                                                                     |                              | <ul> <li>Elementos estructurales</li> </ul> |
|                                                                     |                              | (Nucleósidos, nucleótidos), ángulos         |
|                                                                     |                              | de torsión y enlace glucosídico,            |
|                                                                     |                              | empacamiento del anillo de                  |
|                                                                     |                              | furanosa, bases nitrogenadas,               |
|                                                                     |                              | tautomería de las bases nitrogenadas,       |
|                                                                     |                              | puentes de hidrógeno, fuerzas que           |
|                                                                     |                              | sostienen la estructura                     |
|                                                                     |                              | Propiedades físico-químicas                 |
|                                                                     |                              | de la doble hélice: desnaturalización       |
|                                                                     |                              | del ADN, efecto hipercrómico.               |
|                                                                     |                              | Polimorfismos de ADN                        |
|                                                                     |                              | Otras estructuras, Triple                   |
|                                                                     |                              | hélice, tetra-hélices                       |
|                                                                     |                              | Estructura de ARN                           |
|                                                                     |                              | Topología del ADN                           |
|                                                                     |                              | Estructura de la Cromatina                  |
|                                                                     |                              | Estructura Cromosómica                      |

# UNIDAD 4

Contenido: Describa las unidades o temas y contenidos a desarrollar

| Unidad (No. de semanas por | Temas: Replicación del DNA en | Subtemas:                                                     |
|----------------------------|-------------------------------|---------------------------------------------------------------|
| unidad): 1.33 (8 HORAS)    | procariotes y eucariotes      | Replicación en Procariotes                                    |
|                            |                               | Perspectiva histórica:                                        |
|                            |                               | Observaciones de                                              |
|                            |                               | Watson/Crick (1953),                                          |
|                            |                               | Meselson-Stahl (1958),                                        |
|                            |                               | Cairns (1963).                                                |
|                            |                               | • Química de la                                               |
|                            |                               | polimerización del DNA                                        |
|                            |                               | • Pasos en el proceso de                                      |
|                            |                               | replicación: Iniciación,                                      |
|                            |                               | elongación y terminación.                                     |
|                            |                               | <ul> <li>Identificación de orígenes de</li> </ul>             |
|                            |                               | replicación e iniciación de la                                |
|                            |                               | replicación.                                                  |
|                            |                               | <ul> <li>La horquilla de replicación</li> </ul>               |
|                            |                               | Enzimas que participan en la                                  |
|                            |                               | replicación: visión desde la                                  |
|                            |                               | Biologia estructural                                          |
|                            |                               | Actividad de lectura de                                       |
|                            |                               | prueba de las polimerasas.                                    |
|                            |                               | Modelo del "trombón"                                          |
|                            |                               | Replicación en eucariotas:                                    |
|                            |                               | Comparativo general entre                                     |
|                            |                               | procariotas y eucariotas.                                     |
|                            |                               | <ul> <li>Iniciación de la replicación</li> </ul>              |
|                            |                               | en eucariotas.                                                |
|                            |                               | <ul> <li>Enzimas que participan en la replicación.</li> </ul> |
|                            |                               | Modelos de replicación                                        |
|                            |                               | eucariota.                                                    |
|                            |                               | Control de la replicación                                     |
|                            |                               | eucariota.                                                    |
|                            |                               | Ejercicios sobre teóricos                                     |
|                            |                               | sobre replicación del DNA                                     |
|                            |                               |                                                               |
|                            |                               |                                                               |

| Contenido: Describa las unidades o temas y contenidos a desarrollar |                                              |                                                                                                                                                           |
|---------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unidad (No. de semanas por<br>unidad): 1 (6 HORAS)                  | Temas: RECOMBINACIÓN Y<br>REPARACIÓN DEL DNA | <ul> <li>Subtemas:</li> <li>Daño al genoma: factores exógenos y endógenos; tipos de daños.</li> <li>Respuesta al daño: mecanismos de respuesta</li> </ul> |

|  | <ul> <li>Sistemas de reparación:<br/>NER; TCR-</li> </ul> |
|--|-----------------------------------------------------------|
|  | NER:BER:MMR y DBS por                                     |
|  | no homológa y homológa                                    |

|                                                                     | UNIDAD 6                                                                     |                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contenido: Describa las unidades o temas y contenidos a desarrollar |                                                                              |                                                                                                                                                                                                                                                                                                      |
| Unidad (No. de semanas por<br>unidad): 1.33 (8 horas)               | Temas: Métodos de amplificación<br>de ácidos nucleicos y ADN<br>recombinante | Subtemas: EXTRACCION Y PURIFICACION DE ACIDOS NUCLEICOS  1.1 Fuentes de ácidos nucleicos 1.2 Métodos de extracción y purificación de DNA 1.2.1 Fenol cloroformo 1.2.2 Extracción con chelex 1.2.3 Métodos basados en silica                                                                          |
|                                                                     |                                                                              | <ul> <li>1.2.4 Charge switch.</li> <li>1.3 Métodos de purificación de RNA</li> <li>1.3.1 Trizol</li> <li>1.3.2 Métodos basados en columnas</li> <li>1.3.3 Métodos basados en perlas magnéticas.</li> </ul>                                                                                           |
|                                                                     |                                                                              | <ol> <li>1.4 Métodos de purificación de plásmidos.</li> <li>1.4.1 Preps.</li> <li>1.5 Métodos de cuantificación de Ácidos nucleicos.</li> <li>1.5.1 Métodos basados en espectrometría.</li> <li>1.5.2 Métodos fluorométricos.</li> <li>1.6 Verificación de la calidad del ácido nucleico.</li> </ol> |
|                                                                     |                                                                              | FUNDAMENTOS DE PCR 2.1 PCR Convencional 2.2 PCR anidada y semianidada. 2.3 RT-PCR 2.4 PCR múltiple 2.5 PCR isotérmica 2.6 PCR en tiempo real 2.7 Whole genome amplification.                                                                                                                         |
|                                                                     |                                                                              | CLONACION DE ACIDOS NUCLEICOS 3.1 Fuentes de ácidos nucleicos para clonar. 3.2 Vectores de clonación. 3.3 Células hospederas 3.4 Métodos de Transformación                                                                                                                                           |

| 3.5 Verificación de la transformación |
|---------------------------------------|
| transformación                        |
| LIBRERÍAS GENÓMICAS Y DE              |
| cDNA.                                 |
| SECUENCIAMIENTO DE                    |
| ACIDOS NUCLEICOS                      |
| 4.1 Fundamentos del método del        |
| dideoxi o terminación de la cadena o  |
| Sanger                                |
| 4.2 Fundamentos de métodos de         |
| secuenciación de nueva generación o   |
| NGS                                   |
| 4.2.1 Pirosecuenciamiento             |
| 4.2.2 Oxford nanopore                 |
| 4.2.3 Pacific Bioscience              |
| 4.2.4 Ion Torrent                     |
| 4.2.5 Illumina                        |

| Unidad (No. de semanas por | Temas: Regulación expresión | Subtemas:                                                                                                                                                                                                                                                   |
|----------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| unidad): 0.7 (4 HORAS)     | génica en procariotes       | -Regulación de la expresión génica en bacterias (procariotes) - Regulación positiva y negativa: El concepto de operón y el modelo de <i>E. coli</i> : lac, gal, trp y ara Reguladores de la transcripción cisy trans - Sistemas sensores de dos componentes |

| Contenido: Describa las unidades o temas y contenidos a desarrollar |                                                     |                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unidad (No. de semanas por<br>unidad) :1.7 (10 horas)               | Temas: Regulación expresión<br>génica en eucariotes | Subtemas: Introducción General: El desarrollo embriológico como modelo espaciotemporal de la diferenciación celular; la complejidad de la expresión génica observada a través de los métodos globales de estudio como Microarrays y RNA-seq; puntos de regulación de la expresión génica: regulación transcripcional y post-transcripcional. |

Definición y caracterización experimental de elemento promotor: El modelo de regulación de la expresión de las moléculas de histocompatibilidad clase II (MHC II). Evidencias que sugieren una regulación transcripcional: Niveles de expresión de proteínas, de mRNA (Northern blots), Run-on. Ejemplos e interpretación.

Mapeo del Promotor Proximal a nivel regional y global: Importancia de genes reporteros, Delecciones con Bal31, Linker-Scanning, Método de la Extensión del Primer, Gro-Seq. Ejemplos e interpretación.

Mapeo Global de los Sitios de Inicio de la Transcripción (TSS): Método Cap Analysis of Gene Expression (CAGE)

Características de los TSSs: Iniciación Enfocada y Dispersa.

**Tipos de elementos reguladores proximales:** Definición de secuencia consensus, Caja TATA, Inr, MTE, DPE, otros.

Métodos de estudio para determinar interacción proteína: DNA: Retardo en la movilidad electroforética (EMSA), Supershift, Interferencia por Metilación, Footprinting in vitro e in vivo, Inmunoprecipitación de la Cromatina (ChIP), ChIP-ChIP, ChiP-Seq. Ejemplos e interpretación.

Factores de Transcripción: Características Principales, Purificación y Caracterización: Definición, screening librerías de cDNA, estructura modular, Dominios (DBD, AD, Multimerización), principales familias, estructura del DBD, estructura de los ADs.

Región Central del Promotor (Core) y el Aparato General de la Transcripción: Factores Generales

de la Transcripción, Ensamblaje del Complejo de Pre iniciación, Factores Asociados a la Transcripción (TAFs), Características y función del TFIID, TRFs (TBP Related Factors), Coactivadores y características, los Complejos Mediador e Integrador, Mapeo de Interacciones entre Proteínas (Yeast Two Hybrid). Ejemplos e interpretación.

Epinegenética: El Código de las Histonas y su implicación en la regulación de la Transcripción: El papel de la cromatina en la regulación de la expresión génica; modificaciones postranscripcionales de las histonas: acetilasas, desacetilasas, metilasas y demetilasas; otras modificaciones; interpretación del contexto epigenético en la regulación de la expresión génica. Ejemplos e interpretación.

Elementos Reguladores y modelos de regulación: Potenciosomas (MHC clase II e interferones tipo I); Potenciadores y Regiones Controladoras de Locus (LCRs); Papel de los Factores de Transcripción Pioneros; el concepto de Transcription Factors Activation Domains (TADs); Características y Función de eRNAs; Determinación de la interacción física entre elementos reguladores (técnicas de cambios en la conformación de la cromatina 3C); Aisladores y Silenciadores, función y características. Ejemplos e interpretación.

Cromatina y Regulación de la Transcripción: El concepto de eucromatina y heterocromatina; Sitios Hipersensibles a la DNasa I y métodos de identificación (DNaseseq; Identifación de Sitios Reguladores utilizando Formaldehído FAIRE); Complejos Remodeladores de la Cromatina.

| Ejemplos e interpretación. Ejemplos e interpretación. |
|-------------------------------------------------------|
| Características de los Promotores                     |
| regulados por RNA pol I y RNA                         |
| pol III: Estructura de los                            |
| promotores; Factores de                               |
| Transcripción asociados a esta                        |
| regulación.                                           |
| Consideraciones Adicionales:                          |
| Dinámica de la Transcripción y                        |
| medición por FRAP (Fluorescence                       |
| Recovery after Photobleaching);                       |
| Genética de la Expresión Génica e                     |
| importancia de los eQTLs;                             |
| Territorios Nucleares                                 |

| Unidad (No. de semanas por | Temas: Síntesis de RNA | Subtemas:                                   |
|----------------------------|------------------------|---------------------------------------------|
| unidad):                   |                        | Organización de la cromatina y              |
| 1.33 (8 HORAS)             |                        | mecanismos de la regulación de la           |
|                            |                        | transcripción                               |
|                            |                        | Regulación de la                            |
|                            |                        | transcripción a través de RNA               |
|                            |                        | antisentido                                 |
|                            |                        | <ul> <li>Modificaciones pos-</li> </ul>     |
|                            |                        | traduccionales de histonas                  |
|                            |                        | <ul> <li>Condensación y</li> </ul>          |
|                            |                        | descondensación de la cromatina             |
|                            |                        | Fábricas de transcripción                   |
|                            |                        | Características de las 3 RN                 |
|                            |                        | polimerasas                                 |
|                            |                        | • La IV RNA polimerasa en                   |
|                            |                        | plantas                                     |
|                            |                        | Ciclo de transcripción y                    |
|                            |                        | factores generales de transcripción         |
|                            |                        | Iniciación, elongación y                    |
|                            |                        | terminación de la transcripción             |
|                            |                        | <ul> <li>Patrón de cambios</li> </ul>       |
|                            |                        | postraduccionales de la CTD de la           |
|                            |                        | RNA Pol II y su importancia en la           |
|                            |                        | transcripción                               |
|                            |                        | <ul> <li>Maduración del pre-mRNA</li> </ul> |
|                            |                        | capping, splicing, pli(A)                   |
|                            |                        | <ul> <li>Splicing alternativo y</li> </ul>  |
|                            |                        | edición                                     |
|                            |                        | Transcripción por la RNA                    |
|                            |                        | Pol I y II                                  |
|                            |                        | Exportación de mRNA                         |
|                            |                        | Mecanismos de exportación                   |
|                            |                        | y maquinaria implicada                      |

| Conexión entre transcripción |
|------------------------------|
| y exportación                |
| Vía alterna de exportación   |
| de mRNA                      |
| RNA no codificantes:         |
| siRNA y microRNA             |

|                            | es o temas y contenidos a desarrollar |                                                            |
|----------------------------|---------------------------------------|------------------------------------------------------------|
| Unidad (No. de semanas por | Temas: Síntesis de proteínas          | Subtemas:                                                  |
| unidad): 1.7 (10 HORAS)    |                                       | Estructura básica de los                                   |
|                            |                                       | aminoácidos, clasificación, enlace                         |
|                            |                                       | peptídico, configuraciones $\alpha$ , $\beta$ , $\alpha$ y |
|                            |                                       | $\beta$ , y $\alpha+\beta$ . Características               |
|                            |                                       | funciónales. Definiciones y                                |
|                            |                                       | conceptos de proteínas                                     |
|                            |                                       | conservadoras, no conservadoras,                           |
|                            |                                       | regiones invariantes, dominios y                           |
|                            |                                       | algunos ejemplos como                                      |
|                            |                                       | homodominios, homeodominios,                               |
|                            |                                       | cremallera de leucinas, familias y                         |
|                            |                                       | ejemplos, ortólogos/parálogos.                             |
|                            |                                       | Metodologías para el estudio de las                        |
|                            |                                       | proteínas.                                                 |
|                            |                                       | Métodos de extracción de proteínas                         |
|                            |                                       | y precipitación de proteínas.                              |
|                            |                                       | Conceptos generales de                                     |
|                            |                                       | cromatografías y ejemplos de                               |
|                            |                                       | algunas de ellas como, exclusión de                        |
|                            |                                       | tamaño, intercambio iónico,                                |
|                            |                                       | afinidad, capa delgada, HPLC.                              |
|                            |                                       | Conceptos generales de                                     |
|                            |                                       | electroforesis, Geles de                                   |
|                            |                                       | poliacrilamida - SDS-PAGE,                                 |
|                            |                                       | diferencia en corridos de proteínas                        |
|                            |                                       | nativas, desnaturalizantes y                               |
|                            |                                       | reductoras. Geles de tricine para                          |
|                            |                                       | péptidos. Geles continuos                                  |
|                            |                                       | discontinuos, en gradiente.                                |
|                            |                                       | Isoelectroenfoque- IEF, empleando                          |
|                            |                                       | las tirillas de pH. Bidimensionales y                      |
|                            |                                       | su uso en estudios de proteómica.                          |
|                            |                                       | Conceptos generales de                                     |
|                            |                                       | Inmunotransferencia.                                       |
|                            |                                       | Traducción en Eucariotes.                                  |

- Maquinaria ribosomal (rRNA/proteínas)
- Activación de la síntesis de proteínas
- Factores de iniciación, elongación y terminación.
- Regulación de la traducción.
- Prueba de lectura y factores que la regulan.
- Inhibición de las síntesis de proteínas por antibióticos, toxinas etc.
- Modificaciones Co y Postransduccionales.
- Péptido señal y otras señales específicas para el reconocimiento de las proteínas y su traslado al RER y las modificaciones que se realizan en este sitio.
- Modificaciones a través del aparato de Golgi hasta su sitio de acción. Topología de las proteínas de membrana y su importancia en su función.
- Plegamiento de las proteínas, diferencia entre chaperonas, chaperoninas y cochaperonas, estructura y función.
- Estructura y función de las chaperonas en proteínas recién sintetizadas.
- Fuerzas e interacciones que favorecen el plegamiento
- Chaperonas Vs
   Chaperoninas vs. Co-chaperonas
- Función del foldosoma en proteínas ya sintetizadas y como ayudan a su activación o conformación final.
- Complejo Proteasoma
- Estructura y función del Proteasoma como maquinaria para degradar las

|  | proteínas y recambio de ellas<br>y como activadora de vías de<br>señalización se dan algunos<br>ejemplos como ciclo celular,<br>presentación antigénica,<br>activación de factores de<br>transcripción como NF-kB |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Regulación de la traducción de proteínas                                                                                                                                                                          |
|  | 1. Estructura y ensamblaje de<br>las vías del complejo del<br>control de calidad en el<br>ribosoma.                                                                                                               |
|  | • 2. El papel de la ligasa E3<br>Not4 en el control de calidad<br>co-traduccional.                                                                                                                                |
|  | • 3. Maduración final de la sub-unidad 40S (pre-40S) está sujeto a un control de la Calidad.                                                                                                                      |
|  | 4. Control de calidad de los mARN defectuosos                                                                                                                                                                     |

| Contenido: Describa las unidades o temas y contenidos a desarrollar |                                           |                                                                                                                                                                                                                                                            |  |  |  |  |
|---------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Unidad (No. de semanas por unidad): 1.33 (8 HORAS)                  | Temas: Señalización a través de membranas | Subtemas:      Unión ligando célula     Unión en fase soluble     Métodos de estudio (inmunoprecpitación, coprecipitación)  2. Vías de señalización de acuerdo al                                                                                          |  |  |  |  |
|                                                                     |                                           | <ul> <li>2.1. Receptores con actividad PTK</li> <li>2.2. Receptores acoplados a proteínas con actividad PTK</li> <li>2.3. Receptores y proteínas adaptadoras</li> <li>2.4. Receptores acoplados a proteínas G</li> <li>2.5. Segundos mensajeros</li> </ul> |  |  |  |  |

|  | • | 2.6. Ejempl                   | os en | la  |
|--|---|-------------------------------|-------|-----|
|  |   | regulación d<br>muerte celula |       | о у |
|  |   |                               |       |     |

| ~                                      | CNIDAD 12                             |                                    |
|----------------------------------------|---------------------------------------|------------------------------------|
| <b>Contenido:</b> Describa las unidade | es o temas y contenidos a desarrollar |                                    |
| Unidad (No. de semanas por             | Temas: Elementos básicos de           | Subtemas:                          |
| unidad): 2 (12 HORAS)                  | bioinformática                        | Elementos fundamentales de la      |
|                                        |                                       | Bioinformática y modelos de bases  |
|                                        |                                       | de datos para la obtención de      |
|                                        |                                       | información (NCBI).                |
|                                        |                                       | Navegación en bases de datos       |
|                                        |                                       | públicas.                          |
|                                        |                                       | Búsquedas específicas en bases de  |
|                                        |                                       | datos y análisis de secuencias.    |
|                                        |                                       | Métodos predictivos.               |
|                                        |                                       | Técnicas bioinformáticas aplicadas |
|                                        |                                       | en métodos de amplificación y ADN  |
|                                        |                                       | recombinante                       |
|                                        |                                       | Para el Curso-Taller:              |
|                                        |                                       | Tutorial en línea de la página de  |
|                                        |                                       | internet del National Center for   |
|                                        |                                       | Biotechnology Information (NCBI,   |
|                                        |                                       | NIH).                              |
|                                        |                                       |                                    |
|                                        |                                       | 1- Introducción al Next Generation |
|                                        |                                       | Sequencing - NGS                   |
|                                        |                                       | 2- Introducción al análisis de     |
|                                        |                                       | Genomas usando NGS                 |
|                                        |                                       | 3- Introducción al análisis de     |
|                                        |                                       | transcriptoma por RNA-seq          |

# 3. METODOLOGÍA

El curso se desarrolla a través de clases magistrales

| Actividad de evaluación | Porcentaje | Fecha            |
|-------------------------|------------|------------------|
| Primer Parcial          | 25         | Marzo 13         |
| Segundo Parcial         | 23         | Abril 17         |
| Tercer Parcial          | 21         | Mayo 8           |
| Cuarto Parcial          | 21         | Mayo 29          |
| Talleres                | 10         | Todo el semestre |

#### Actividades de asistencia obligatoria<sup>2</sup>:

Incluya el número de faltas de asistencia máxima permitida. Para el caso de las prácticas académicas defina si la totalidad del curso es de asistencia obligatoria.

## Bibliografía:

#### Unidad 1:

Lodish et al. Molecular Cell Biology 8th Ed. Chapter 2: Chemical foundations

#### Unidad 2:

Stanfield and Germann. Principles of human Physiology, third edition.

Leninger. Principles of Biochemistry. Third edition.

Nelson and Cox. Molecular Biology of the Cell. Alberts Fourth edition)

#### Unidad 3:

-Griffith F. 1928. The significance od Pneumococcal types. J. Hygiene 27: 13-59

-Oswald T. Avery, Colin M. MacLeod, and Maclyn McCarty. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPESJ Exp Med. 1944 Feb 1; 79(2): 137–158.

-Watson JD, Crick FH (April 1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 171 (4356): 737–738

DNA Structure and Function. 1st Edition. Authors: Richard Sinden. eBook ISBN: 9780080571737. Dorothy Buck. 2009. DNA Topology. Proceedings of Symposia in Applied Mathematics Volume 66.

-David M. MacAlpine and Genevie` ve Almouzni. Chromatin and DNA Replication. Cold Spring Harb Perspect Biol 2013;5:a010207

-Bing Li, Michael Carey, and Jerry L. Workman. The Role of Chromatin during Transcription. Cell 128, 707–719, February 23, 2007

#### Libros

Watson, James D. (1980). The Double Helix: A Personal Account of the Discovery of the Structure of DNA. Atheneum. ISBN 0-689-70602-2.

David Freifelder. The DNA  $\,$  molecule: Structure and properties. 1978. Sections II, III,  $\,$  V

#### Unidad 4:

THE REPLICATION OF DNA IN ESCHERICHIA COLI. BY MATTHEW MESELSON AND FRANKLIN W. STAHL. Proc Natl Acad Sci U S A. 1958 Jul 15; 44(7): 671–682.

The replisome uses mRNA as a primer after colliding with RNA polymerase. Richard T. Pomerantz1 & Mike O'Donnell. Nature 456, 762-766 (11 December 2008)

#### Unidad 5:

Molecular Biology of the Cell 6th Edition by <u>Bruce Alberts, Alexander Johnson</u>, <u>Julian Lewis David Morgan</u>, <u>Martin Raff</u>, <u>Keith Roberts</u>), <u>Peter Walter 2014</u>.

Molecular Cell Biology 8th Edition by <u>Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Anthony Bretscher Hidde Ploegh (Angelika Amon), Kelsey C. Martin.</u> 2016

#### Unidad 7:

Hatfull, G. and Jacobs, W.R. Molecular Genetics of Mycobacteria. 2a edición. 2014. ASM Press Snyder, L., Peters, J., Henkin, T.M., Molecular Genetics of Bacteria. 4a edición. 2013. ASM Press **Unidad 8**:

## LIBROS DE REFERENCIA

Lodish et al. Molecular Cell Biology. 8th Ed.

Lewin, B et al. Genes XII.

Watson et al. Molecular Biology of the Gene. 7th Ed

REVISIONES.

\_\_\_\_

<sup>&</sup>lt;sup>2</sup> De conformidad con el artículo 30 del Acuerdo Superior 432 de 2014, cuando un estudiante supere el 30% de faltas de asistencia en un curso sin causa justificable legalmente, reprobará por inasistencia y se calificará con una nota de cero, cero (0.0)

Allen and Taatjes. 2015. Nat Rev Mol Cell Biol. 16:155

Baillat, D., and E. Wagner. 2015. TIBS. 40:257.

Chin-Tong Ong and Corces VG. 2011. Nature Rev Genet. 12:283

Drygin et al. 2010. Annu Rev Pharmacol Toxicol. 50:131.

Ecker J. 2012. Nature. 489:52.

Eidem et al. 2016. J Mol Biol. 428:2652.

Furey TS. 2012. Nature Rev Genet. 13:840

Goodrich and Tjian, 2010. Nature Rev Genetics. 11:549.

Juven-Gershon and Kadonaga. 2010. Devel Biol. 339:225

Levine et al. 2014. Cell. 157:13.

Lam et al. 2014. TIBS. 39:170

Malik and Roeder. 2010. Nature Rev Genetics. 11:761.

Pennacchio et al. 2013. Nature Rev. Genetics. 14:288.

Perissi et al. 2010. Nature Rev Genet. 11:109.

Roy A and Singer DS. 2015. TIBS. 40:165.

Shlyueva D., et al. 2014. Nature Rev Genet. 15:272.

Teperino et al. 2010. Cell Metabol. 12:321

Vaguerizas et al. 2010. Nature Rev Genetics. 10:252

Zeng and Mortazavi. 2012. Nature Immunol. 13:802

#### Unidad 9:

Current Opinion in Structural Biology; 2014. 25:77-85

FEBS J. 2011: 10:1742-4658

Acta Biochim Pol. 2016;63(4):665-673

FEBS J. 2011; 10:1742-4658

EMBO Rep. 2016 Feb;17(2):139-55

Nat Rev Mol Cell Biol. 2015 Mar;16(3):129-43

Nat Rev Mol Cell Biol. 2015 Mar;16(3):155-66.

Biochim Biophys Acta. 2013 Jan;1829(1):55-62.

Genes 2015, 6(2), 163-184

Nucleic Acids Research, 2015, Vol. 43, No. 3 1927–1936

PLoS Genet. 2010 Dec 23;6(12):e1001250

Trends Cell Biol. 2013 Aug;23(8):365-73

Trends Cell Biol. 2013 Aug;23(8):365-73

Adv Drug Deliv Rev. 2015 Jun 29:87:3-14

J Mol Biol. 2016 Jun 19;428(12):2652-9

#### Unidad 10:

The Mechanism of Eukaryotic Translation Initiation: New Insights and Challenges. Alan G. et al. Cold Spring Harb Perspect Biol 2012;4:a011544

The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. Thomas E. et al. Cold Spring Harb Perspect Biol 2012;4:a013706.

Protein synthesis in eukaryotes: The growing biological relevance of cap-independent translation initiation Marcelo López-Lastra. et al. Biol Res 38, 2005, 121-146

Protein Translocation across the Rough Endoplasmic Reticulum. Elisabet C. Mandon. et al. Cold Spring Harb Perspect Biol 2013;5:a013342

Protein Secretion and the Endoplasmic Reticulum. Adam M. Benham. Cold Spring Harb Perspect Biol 2012;4:a012872

Golgi Glycosylation. Pamela Stanley. Cold Spring Harb Perspect Biol 2011;3:a005199.

Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications. Christopher T. Walsh. et al. Chem. Int. Ed. 2005, 44, 7342 – 7372

The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones Jing Li 1, Joanna Soroka 1, Johannes Buchner. Biochimica et Biophysica Acta 1823 (2012) 624–635.

Hsp90: a specialized but essential protein-folding tool. Jason C. Young. et al. The Journal of Cell Biology, Volume 154, Number 2, July 23, 2001 267–273.

Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and their Co Chaperones in Targeting Misfolded Proteins to the Proteasome. Ayala Shiber and Tommer Ravid. Biomolecules 2014, 4, 704-724; doi:10.3390/biom4030704

The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction. Michael H. Glickman and Aaron Ciechanover. Physiol Rev. VOL 82. APRIL 2002. www.prv.org.

Polyubiquitin chains: polymeric protein signals. Cecile M Pickart, and David Fushman. Current Opinion in Chemical Biology 2004, 8:610–616.

The Cellular Chamber of Doom. Alfred L. Goldberg, Stephen J. Elledge and J.Wade Harper. Scientific American January 2001

#### Unidad 11:

- 1. Lecca P. Biomechanics of cells and tissues : experiments, models and simulations. Dordrecht; New York: Springer; 2013. vii, 168 pages p.
- 2. Chatterjee M, Kashfi K. Cell signaling & molecular targets in cancer. New York: Springer; 2012. xi, 328 p. p.
- 3. Unsicker K, Krieglstein K. Cell signaling and growth factors in development: from molecules to organogenesis. Weinheim: Wiley-VCH; 2006.
- 4. Robles-Flores M. Cancer cell signaling: methods and protocols. Second edition. ed. xi, 263 pages p.
- 5. Leese HJ, Brison DR. Cell signaling during mammalian early embryo development. xii, 216 pages p.
- 6. Sato T. Lectin-probed western blot analysis. Methods in molecular biology. 2014;1200:93-100. Epub 2014/08/15.
- 7. Porcario C, Hall SM, Martucci F, Corona C, Iulini B, Perazzini AZ, et al. Evaluation of two sets of immunohistochemical and Western blot confirmatory methods in the detection of typical and atypical BSE cases. BMC research notes. 2011;4:376. Epub 2011/10/01.
- 8. Salman MD, Jemmi T, Triantis J, Dewell RD. Assessment and modification of a Western blot assay for detection of central nervous system tissue in meat products in the United States. Journal of food protection. 2005;68(8):1706-11. Epub 2005/08/01.

### USANDO LOS PRINCIPIOS DE LA MOVILIDAD ELECTROFORÉTICA (EMSA)

9. Lokossou AG, Toufaily C, Vargas A, Barbeau B. siRNA Transfection and EMSA Analyses on Freshly Isolated Human Villous Cytotrophoblasts. Journal of visualized experiments: JoVE. 2016(115). Epub 2016/09/30.

#### FACTORES DE TRANSCRIPCIÓN.

- 10. Moustafa MF, Taha TH, Helal M, Alrumman SA. Differential-display reverse transcription-PCR (DDRT-PCR): a new technology for molecular detection and studying one of the antagonistic factors of Bacillus endophyticus strain SA against Staphylococcus aureus (MRSA). 3 Biotech. 2016;6(2):121. Epub 2016/01/01.
- 11. Essafi A, Gomes AR, Pomeranz KM, Zwolinska AK, Varshochi R, McGovern UB, et al. Studying the subcellular localization and DNA-binding activity of FoxO transcription factors, downstream effectors of PI3K/Akt. Methods in molecular biology. 2009;462:201-11. Epub 2009/01/24.
- 12. Grainger DC, Busby SJ. Methods for studying global patterns of DNA binding by bacterial transcription factors and RNA polymerase. Biochemical Society transactions. 2008;36(Pt 4):754-7. Epub 2008/07/18.
- 13. Immink RG, Angenent GC. Transcription factors do it together: the hows and whys of studying protein-protein interactions. Trends in plant science. 2002;7(12):531-4. Epub 2002/12/12.
- 14. Cekan SZ. Genes and transcription factors, including nuclear receptors: methods of studying their interactions. The Journal of laboratory and clinical medicine. 2002;140(4):215-27. Epub 2002/10/22.

#### PLASMON MAGNETIC RESONANCE

15. Soelberg SD, Stevens RC, Limaye AP, Furlong CE. Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Analytical chemistry. 2009;81(6):2357-63. Epub 2009/02/14

| 4. Participación de docentes de la Universidad de Antioquia |        |                         |                                        |                   |             |                                               |  |
|-------------------------------------------------------------|--------|-------------------------|----------------------------------------|-------------------|-------------|-----------------------------------------------|--|
| Nombres y Apellidos                                         | Cédula | Dependencia             | Formación en<br>pregrado y<br>posgrado | Unidad<br>N°      | N°<br>Horas | Fechas                                        |  |
| Sergio Acin                                                 |        | Facultad<br>Medicina    | PhD                                    | 1,10              | 20          | Febrero 7,9,12,14 Abril 26,29 Mayo 3,6        |  |
| Andrés Baena García                                         |        | Facultad de<br>Medicina | BSc., MSc., PhD                        | 2,7,8,<br>Coordi. | 40          | Febrero<br>16,19,21,23<br>Abril<br>8,10,12,15 |  |
| César Segura                                                |        | Facultad de<br>Medicina | PhD                                    | 3                 | 10          | Febrero<br>26,28<br><b>Marzo</b><br>1,4       |  |
| Juan Fernando Álzate                                        |        | Facultad de<br>Medicina | Microbiólogo,<br>MSc., PhD             | 4,12              | 14          | Marzo<br>6,8,11,13<br>Mayo<br>24,27           |  |
| Carlos Mario Muñetón                                        |        | Facultad de<br>Medicina | BSc., MSc                              | 5                 | 8           | <b>Marzo</b> 15,18,20                         |  |
| Carlos Muskus                                               |        | Facultad de<br>Medicina | MSc., PhD                              | 6,12              | 14          | Marzo 22 Abril 1,3,5 Mayo 20,22               |  |
| Silvio Urcuqui I                                            |        | Facultad de<br>Medicina | MSc., PhD                              | 9                 | 10          | <b>Abril</b> 17,19,22,24                      |  |
| Mauricio Rojas L                                            |        | Facultad de<br>Medicina | BSc., MSc., PhD                        | 11                | 10          | <b>Mayo</b> 8,10,15,17                        |  |

| 5. Participación de docentes externos a la Universidad de Antioquia |        |                            |                                        |                               |              |             |        |
|---------------------------------------------------------------------|--------|----------------------------|----------------------------------------|-------------------------------|--------------|-------------|--------|
| Nombres y<br>Apellidos                                              | Cédula | Entidad<br>donde<br>labora | Formación en<br>pregrado y<br>posgrado | Modalidad de<br>participación | Unidad<br>N° | N°<br>Horas | Fechas |
|                                                                     |        |                            |                                        | Elija un elemento.            |              |             |        |

| 6. | Aprobación del Consejo de Unidad                                           | Académica |       |  |  |  |  |  |
|----|----------------------------------------------------------------------------|-----------|-------|--|--|--|--|--|
| Ap | Aprobado en Acta número del Haga clic aquí o pulse para escribir una fecha |           |       |  |  |  |  |  |
|    |                                                                            |           |       |  |  |  |  |  |
|    |                                                                            |           |       |  |  |  |  |  |
|    |                                                                            |           |       |  |  |  |  |  |
|    |                                                                            |           |       |  |  |  |  |  |
| _  |                                                                            |           |       |  |  |  |  |  |
|    | Nombre Completo Secretario                                                 |           |       |  |  |  |  |  |
|    |                                                                            |           |       |  |  |  |  |  |
|    | Académica                                                                  | Firma     | Cargo |  |  |  |  |  |
|    | del Consejo de la Unidad<br>Académica                                      | Firma     | Cargo |  |  |  |  |  |