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Abstract

Lower prediagnostic circulating 25-hydroxyvitamin D (25[OH]D)—considered the

best marker of total vitamin D exposure—is associated with higher mortality risk

among colorectal cancer (CRC) patients. However, it is unknown whether this associ-

ation differs by the vitamin D-binding protein (GC) isoform Gc2 (encoded by GC

rs4588*C>A, Thr436Lys), which may substantially affect vitamin D metabolism and

modify associations of 25(OH)D with colorectal neoplasm risk. Prediagnostic 25(OH)

D-mortality associations according to Gc2 isoform were estimated using multivariable
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Cox proportional hazards regression among 1281 CRC cases (635 deaths, 483 from

CRC) from two large prospective cohorts conducted in the United States (Cancer Pre-

vention Study-II) and Europe (European Prospective Investigation into Cancer and

Nutrition). 25(OH)D measurements were calibrated to a single assay, season stan-

dardized, and categorized using Institute of Medicine recommendations (deficient

[<30], insufficient [30 - <50], sufficient [≥50 nmol/L]). In the pooled analysis,

multivariable-adjusted hazard ratios (HRs) for CRC-specific mortality associated with

deficient relative to sufficient 25(OH)D concentrations were 2.24 (95% CI 1.44-3.49)

among cases with the Gc2 isoform, and 0.94 (95% CI 0.68-1.22) among cases without

Gc2 (Pinteraction = .0002). The corresponding HRs for all-cause mortality were 1.80

(95% CI 1.24-2.60) among those with Gc2, and 1.12 (95% CI 0.84-1.51) among those

without Gc2 (Pinteraction = .004). Our findings suggest that the association of

prediagnostic vitamin D status with mortality among CRC patients may differ by

functional GC isoforms, and patients who inherit the Gc2 isoform (GC rs4588*A) may

particularly benefit from higher circulating 25(OH)D for improved CRC prognosis.

K E YWORD S

25-hydroxyvitamin D, cohort studies, gene-environment interaction, single nucleotide

polymorphism, survival analysis

1 | INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of cancer

death among men and women combined globally.1 Vitamin D reg-

ulates several important signaling pathways relevant to cancer

progression and prognosis, including proliferation, differentiation,

angiogenesis, apoptosis, inflammation and metastasis.2 Circulating

25-hydroxyvitamin D (collective term for D2 and D3, 25[OH]D) is con-

sidered the best marker of total vitamin D exposure and is used clini-

cally to assess vitamin D status.3 Lower 25(OH)D concentrations are

associated with higher mortality risk among CRC patients in observa-

tional studies4-7; however, it is unknown whether this association dif-

fers depending on functional variants in the gene (GC, formerly known

as group-specific component) encoding for the vitamin D-binding pro-

tein (GC, also known as DBP), which may impact vitamin D bioavail-

ability and metabolism. Investigation of interaction between 25(OH)D

and functional GC variants could be important for: (a) identifying sub-

groups of individuals in which adequate 25(OH)D may be particularly

beneficial, and (b) providing biologic insight into vitamin D metabolism

and CRC progression.8

Nearly 90% of circulating 25(OH)D is bound to the GC pro-

tein, which delivers vitamin D to target tissues and helps maintain

stable 25(OH)D stores.9,10 The two missense variants GC rs4588

and rs7041 encode for three common protein isoforms—Gc1s,

Gc1f and Gc2.11 We recently reported that associations of

25(OH)D concentrations with risk of incident, sporadic colorectal

adenoma12 and CRC13 were stronger among individuals with the

Gc2 isoform than among those with only Gc1 isoforms. Relative

to the Gc1 isoforms (distinguished by the rs7041 genotype), the

Gc2 isoform (determined by the rs4588 genotype) is associated

with an approximately twofold to fourfold lower 25(OH)D binding

affinity14 and twofold to threefold higher vitamin D-pathway

induction by 25(OH)D in vitro15, providing biologic plausibility for

these clinically relevant genotype-specific associations.

Accordingly, we hypothesized that the association of prediagnostic

25(OH)D concentrations with mortality risk among CRC patients would

be stronger among individuals with the Gc2 isoform than among those

without it. We investigated whether associations of 25(OH)D with

CRC-specific and all-cause mortality differed by Gc2 isoform among

1281 CRC patients in two large prospective cohort studies in the United

States (US) and Europe.

What's new?

Vitamin D regulates molecular pathways that are relevant to

cancer progression. In patients with colorectal cancer (CRC),

low serum levels of vitamin D have been associated with

increased mortality. A protein called GC binds vitamin D and

delivers it to tissues. In this study, the authors found that the

increased mortality risk with low vitamin D was only seen in

those CRC patients who carry a genetic variant of GC called

Gc2. These results may help to identify a vulnerable sub-

group of CRC patients, who may particularly benefit from

vitamin D supplementation.
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2 | METHODS

2.1 | Study population

We analyzed individual patient data from the European Prospective

Investigation into Cancer and Nutrition (EPIC) and the Cancer Preven-

tion Study-II (CPS-II) prospective cohort studies. Details of the study

populations and data collection were published previously for EPIC16

and CPS-II.17 Briefly, EPIC recruited over 520 000 men and women

from the general population in 10 western European countries from

1992 to 1998,18 and CPS-II recruited 184 194 men and women

across 21 US states from 1992 to 1993.17 Blood samples were col-

lected prior to cancer diagnosis from EPIC participants between 1992

and 1998, and from CPS-II participants between 1998 and 2001.

Prediagnostic circulating 25(OH)D concentrations were measured for

1248 and 298 incident CRC cases for previous case-control studies

with 1:1 matching nested in EPIC18 and CPS-II,19 respectively.

Detailed descriptions of case selection and exclusions for these stud-

ies are described elsewhere.4,18,19 Of these 1546 CRC cases, we fur-

ther excluded seven non-white CPS-II cases, 142 EPIC cases and

44 CPS-II cases with missing genotyping information, 25 EPIC cases

with missing cause of death information and 38 EPIC cases and nine

CPS-II cases with missing follow-up or vital status information, leaving

1281 CRC cases for these analyses. The EPIC and CPS-II studies were

approved by their respective institutional review boards, and written

informed consent was obtained from each subject.

2.2 | Follow-up

Follow-up for CRC incidence occurred during 1993-2004 in EPIC,4,18

and 1999-2007 in CPS-II.20 In EPIC, vital status and cancer incidence

information was collected via linkage to regional and/or national mor-

tality registries in all countries except France, Germany and Greece,

where participants were followed using a combination of cancer/

pathology registries, health insurance records and active follow-up, as

described previously.4 Censoring dates for complete follow-up in EPIC

occurred in 2012 (Netherlands, Greece), 2013 (France, Italy, Spain,

UK, Denmark) and 2014 (Germany, Sweden). In CPS-II, CRC cases

were followed through 2014, and vital status and cause of death

information were collected via linkage to the National Death Index.20

CRC-attributable deaths were determined using the International

Classification of Diseases for Oncology (ICD-O) 10th revision codes

C18.0-18.7 and C19 for colon cancer (including C18.1 for appendix

cancer), C20 for rectal cancer and C18.8-18.9 for overlapping/

unspecified colorectal origin.

2.3 | 25(OH)D Measurements

Total serum 25(OH)D (D2 and D3) was measured using the

FDA-approved DiaSorin Liaison chemiluminescence immunoassay

(CLIA) in CPS-II19 (Heartland Assays, Ames, Iowa), and the OCTEIA

enzyme immunoassay (Immuno Diagnostic Systems, Boldon, UK) in

EPIC.18 Inter-assay coefficients of variation were 5.2% in CPS-II and

5.7% in EPIC. EPIC 25(OH)D measurements were calibrated to the

same assay used in CPS-II using a robust linear regression calculated

by remeasuring a subset of 40 EPIC samples within each 25(OH)D

decile using the DiaSorin CLIA, described previously.21 Each assay

batch included the National Institute of Standards and Technology

standard reference materials, for which the coefficients of variation

were 16%, 9% and 9% at 17.7, 32.3 and 49.8 nmol/L, respectively.

2.4 | Genotyping

Genotyping was performed using a custom GoldenGate Universal-

plex assay kit (Illumina, San Diego, California) in EPIC, and a custom

Affymetrix genome-wide platform, the Axiom Correct Set (Affymetrix,

Santa Clara, California), in CPS-II. Quality control measures for

CPS-II22 and EPIC23 were reported previously. Individuals with the GC

rs4588 CC, CA and AA genotypes were classified as having Gc1-1,

Gc1-2 and Gc2-2 isoform combinations (or phenotypes), respec-

tively.11 These genotypes perfectly predict the expected amino acid

changes of the circulating protein isoforms as determined in previous

proteomic analyses.24 In EPIC, GC rs3755967 was used as a proxy for

rs4588 since these SNPs are in complete linkage disequilibrium

(r2 = 1.0) in the HapMap Spanish and British Western European

populations similar to EPIC's (LDproxy, 1000 Genomes Project Phase

3). GC rs3755967 and rs4588 were in Hardy-Weinberg equilibrium in

both studies.

2.5 | Statistical analyses

To seasonally adjust 25(OH)D measurements, calibrated (EPIC) or

newly measured (CPS-II) 25(OH)D values were regressed on week of

blood draw using a cos/sin function, and residuals from the model

were added to the study- and sex-specific mean among cases (details

in references 19 and 21. The adjusted value may be interpreted as the

predicted 25(OH)D concentration for a participant averaged over the

entire year, accounting for study- and sex-specific seasonal variation

in 25(OH)D.

CRC-specific mortality was the primary endpoint, and all-cause

mortality was the secondary endpoint. Our primary exposure was cir-

culating 25(OH)D categorized a priori according to clinical guidelines

for vitamin D status set by the Institute of Medicine (IOM, now the

National Academy of Medicine): <30 nmol/L (deficient), 30 to

<50 nmol/L (insufficient), and ≥50 nmol/L (sufficient). For our primary

analysis, effect modification by Gc2 was evaluated using a dominant

inheritance model given the low frequency of Gc2-2 homozygotes. As

a secondary analysis, we coded Gc2 using a codominant inheritance

model as we would expect the 25(OH)D-CRC survival association to

be stronger with an increasing number of Gc2-encoding alleles; here,

GIBBS ET AL. 3



25(OH)D was dichotomized at 50 nmol/L to maximize statistical

efficiency.

A Cox proportional hazards model, stratified by country of cancer

diagnosis, was used to calculate hazard ratios (HRs) and 95% confi-

dence intervals (CIs) for CRC-specific and all-cause mortality

according to 25(OH)D concentrations and Gc2 isoform. Age between

diagnosis and censorship or death was used as the time-scale, which

may better control for age and reduce bias.25 Covariates included year

of diagnosis (continuous), sex, tumor site (colon, rectum, missing/not

specified), body mass index (BMI) (continuous), physical activity (quar-

tiles 1-4, missing), smoking status (never, former, current, missing) and

stage (I-IV, missing/not specified). Potential covariates were selected

based on biological plausibility, causal structure, and previous litera-

ture; of those selected, education, dietary calcium and alcohol con-

sumption were not included in the final model because they did not

materially affect the estimated HRs. The proportional hazards

assumption was evaluated by including a time-dependent covariate in

the Cox model and by assessing the correlation between the

Schoenfeld residuals and survival time.26 Estimates were calculated in

each study separately and in a pooled analysis using aggregated data.

Results presented hereafter are based on the pooled analysis unless

otherwise stated. Multiplicative interaction between 25(OH)D and

the Gc2 isoform was evaluated by comparing the pooled, adjusted

Cox models with and without an interaction term using a likelihood

ratio test.

To assess whether competing causes of death may have

influenced the observed associations, adjusted cumulative incidence

curves for CRC-specific mortality risk were estimated according to

25(OH)D and Gc2 isoform using Fine and Gray's competing-risks

regression.27

All statistical tests were two-sided; a P-value <.05 or a 95% confi-

dence interval that excluded 1.0 was considered statistically signifi-

cant. Analyses were performed in SAS version 9.4 (Cary, North

Carolina).

3 | RESULTS

3.1 | Study population and follow-up

During follow-up of the 1281 CRC cases, 635 died, including 483 from

CRC. Mean follow-up duration was 8.3 years in EPIC and 7.3 years in

CPS-II. Characteristics of CRC cases according to IOM-defined vita-

min D status categories are summarized in Table 1.

3.2 | 25(OH)D and mortality according to Gc2

Associations of 25(OH)D concentrations with mortality among all

participants and according to Gc2 isoform, assuming a dominant

inheritance model, are summarized in Table 2. Relative to those

with 25(OH)D concentrations considered sufficient by the IOM

(≥50 nmol/L), CRC-specific mortality risk for those with concentra-

tions considered deficient (<30 nmol/L) was statistically significantly

33% higher among all cases, 124% higher among cases with Gc2, and

nonstatistically significantly 6% lower among cases without Gc2

(Pinteraction = .0002). There was a dose-response association trend

between lower (poorer) vitamin D status and higher mortality risk

among those with Gc2 (Ptrend = <.0001 and .0002 for CRC-specific

and overall mortality, respectively), but not among those without Gc2

(Ptrend = .69 and .49 for CRC-specific and overall mortality, respec-

tively). This pattern of effect modification by Gc2 was similar in both

EPIC and CPS-II (Table S1).

Associations of 25(OH)D concentrations with CRC-specific and

all-cause mortality among all participants and according to Gc2 iso-

form, assuming a codominant inheritance model, are summarized in

Table 3. Relative to those with 25(OH)D concentrations considered

sufficient, CRC-specific mortality risk for those with nonsufficient

concentrations (<50 nmol/L) was close to the null among Gc1-1

cases, statistically significantly 54% higher among Gc1-2 cases, and

nonstatistically significantly 150% higher among Gc2-2 cases

(Pinteraction = .003). Estimated all-cause mortality risk for those with

nonsufficient relative to sufficient 25(OH)D concentrations varied

from 6% to 33% higher among Gc1-1, Gc1-2 and Gc2-2 cases, but

did not statistically significantly differ by Gc2 (Pinteraction = .09). The

pattern of effect modification by number of Gc2-encoding alleles

for CRC-specific mortality was similar in EPIC and CPS-II

(Table S2).

3.3 | Competing risks regression and cumulative
incidence curves

Using multivariable-adjusted competing-risks regression, we

observed a dose-response association of lower 25(OH)D concen-

trations with higher CRC-specific mortality among those with the

Gc2 isoform, but not among those without Gc2 (Figure 1). Among

individuals with Gc2, the estimated risk dying from CRC within

5 years of diagnosis was approximately 15% if vitamin D sufficient,

20% if vitamin D insufficient and 30% if vitamin D deficient prior to

diagnosis, controlling for all other covariates and accounting for

competing causes of death.

3.4 | Subgroup and sensitivity analyses

The association of 25(OH)D concentrations <50 relative to

≥50 nmol/L with CRC-specific mortality among individuals with

and without the Gc2 isoform did not statistically significantly differ

according to sex, stage, tumor site or calcium intake; however, the

observed effect-modification pattern by Gc2 was slightly more pro-

nounced among rectal cancer cases, Stages I-II cases, and individ-

uals with above-median dietary calcium intake (Table S3). In

sensitivity analyses, our effect-modification findings were slightly

4 GIBBS ET AL.
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stronger when we excluded metastatic CRC cases (Table S4) or

cases diagnosed within 1 or 3 years of their prediagnostic blood

draw (Table S5). There was also a similar pattern of effect

modification by Gc2 when we categorized 25(OH)D using study-

specific 25(OH)D tertile cut-points (Table S6), further supporting

the robustness of our findings.

TABLE 2 Multivariable-adjusted associations of prediagnostic vitamin D status with CRC-specific and all-cause mortality among all CRC
cases and according to vitamin D-binding protein (GC) isoform, assuming a dominant inheritance model, in the EPIC and CPS-II cohorts combined
(n = 1281)

Outcome and GC strata

Circulating 25(OH)D concentrations

Ptrend
a Pinteraction

b

≥50 nmol/L (sufficient) 30 to <50 nmol/L (insufficient) <30 nmol/L (deficient)

No.
total

No.
died

HR
(95% CI)c

No.
total

No.
died HR (95% CI)c

No.
total

No.
died HR (95% CI)c

CRC-specific mortality

All CRC cases 322 106 1.00 (Ref) 593 241 1.09 (0.83-1.43) 366 136 1.33 (1.03-1.72) .02

No Gc2 (GC rs4588*CC) 187 72 1.00 (Ref) 309 114 1.11 (0.78-1.57) 164 70 0.94 (0.68-1.22) .69

Gc2 (GC rs4588*CA or AA) 135 34 1.00 (Ref) 284 127 1.29 (0.81-2.06) 202 66 2.24 (1.44-3.49) <.0001 .0002

All-cause mortality

All CRC cases 322 146 1.00 (Ref) 593 301 1.13 (0.90-1.43) 366 188 1.36 (1.09-1.70) .005

No Gc2 (GC rs4588*CC) 187 93 1.00 (Ref) 309 148 1.26 (0.93-1.72) 164 93 1.12 (0.84-1.51) .49

Gc2 (GC rs4588*CA or AA) 135 53 1.00 (Ref) 284 153 1.09 (0.75-1.61) 202 95 1.80 (1.24-2.60) .0002 .004

Note: According to the Institute of Medicine 2011 recommendations.

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; CI, confidence interval; CPS-II, Cancer Prevention Study-II; CRC, colorectal cancer; GC, vitamin D-binding

protein; EPIC, European Prospective Investigation into Cancer and Nutrition; HR, hazard ratio.
aPtrend calculated by using vitamin D status as a continuous variable in the model.
bPinteraction between vitamin D status and GC isoform calculated using a likelihood ratio test.
cFrom multivariable Cox proportional hazards models, adjusted for year of diagnosis (continuous), sex, tumor site (colon, rectum, missing/not specified),

BMI (continuous), physical activity (Quartiles 1-4, missing), smoking status (never, former, current, missing) and stage (I-IV, missing/not specified), and strat-

ified by country.

TABLE 3 Multivariable-adjusted associations of prediagnostic vitamin D status with CRC-specific and all-cause mortality among all CRC
cases and according to vitamin D-binding protein (GC) isoform, assuming a codominant inheritance model, in the EPIC and CPS-II cohorts
combined (n = 1281)

Outcome and GC strata

Circulating 25(OH)D concentrations

≥50 nmol/L (sufficient) <50 nmol/L (nonsufficient)

Pinteraction
aNumber of total Number of died HR (95% CI)b Number of total Number of died HR (95% CI)b

CRC-specific mortality

All CRC cases 322 106 1.00 (Ref) 959 377 1.22 (0.97-1.52)

Gc1-1 (GC rs4588*CC) 187 72 1.00 (Ref) 473 184 0.96 (0.72-1.29) .003

Gc1-2 (GC rs4588*CA) 120 32 1.00 (Ref) 390 149 1.54 (1.02-2.32)

Gc2-2 (GC rs4588*AA) 15 2 1.00 (Ref) 96 44 2.50 (0.56-11.1)

All-cause mortality

All CRC cases 322 146 1.00 (Ref) 959 489 1.21 (1.00-1.47)

Gc1-1 (GC rs4588*CC) 187 93 1.00 (Ref) 473 241 1.06 (0.83-1.37) .09

Gc1-2 (GC rs4588*CA) 120 48 1.00 (Ref) 390 194 1.33 (0.94-1.86)

Gc2-2 (GC rs4588*AA) 15 5 1.00 (Ref) 96 54 1.13 (0.41-3.05)

Note: According to the Institute of Medicine 2011 recommendations.

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; CI, confidence interval; CPS-II, Cancer Prevention Study-II; CRC, colorectal cancer; GC, vitamin D-binding

protein; EPIC, European Prospective Investigation into Cancer and Nutrition; HR, hazard ratio.
aPinteraction between vitamin D status and GC isoform calculated using a likelihood ratio test.
bFrom multivariable Cox proportional hazards models adjusted for age at diagnosis, year of diagnosis, sex, tumor site (colon, rectum, missing/not specified),

BMI (continuous), physical activity (quartiles 1-4, missing), smoking status (never, former, current, missing) and stage (I-IV, missing/not specified) and strati-

fied by country.
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4 | DISCUSSION

Our findings suggest that prediagnostic vitamin D deficiency relative to

sufficiency, based on IOM recommendations, may be associated with

higher mortality risk among CRC patients, but only among those with

the common Gc2-encoding GC rs4588*A functional variant that may

affect 25(OH)D binding affinity, bioavailability and vitamin D-pathway

activation.11,28 This association was stronger for CRC-specific mortality,

which may have been due to non-vitamin D-related deaths in the all-

cause mortality group. To the best of our knowledge, this is the first

study to investigate the association of 25(OH)D concentrations with

mortality among CRC patients by GC vitamin D-binding protein isoform.

Findings from observational studies suggest an association of cir-

culating 25(OH)D concentrations—including those measured before

diagnosis4,5 and after diagnosis7—with CRC-specific mortality. Fur-

thermore, findings from some studies indicate that 25(OH)D may be a

clinically relevant prognostic factor and add value to predictive sur-

vival models for CRC patients.7,29 However, our findings suggest that

the utility of 25(OH)D as prognostic factor among CRC patients in the

US and Europe may critically depend on inherited genotypes encoding

common, functional GC isoforms. If our findings are confirmed, they

would support GC genotyping, which could be easily and affordably

obtained in clinical settings, for guiding vitamin D-related therapy and

survival stratification.

Evidence from randomized clinical trials (RCTs) of vitamin D sup-

plementation improving survival of CRC patients is limited. In a US

phase-II, multicenter RCT with 139 patients with advanced or meta-

static CRC, those randomized to high-dose (4000 IU/day) relative to

low-dose (400 IU/day) vitamin D supplementation had longer

progression-free survival (HR = 0.64, one-sided 95% CI 0-0.90,

P = .02), which was the primary outcome, although no significant

treatment effect was observed for overall survival.30 Importantly, find-

ings from a larger RCT (n = 2259) suggest that the effects of vitamin

D supplementation on increasing 25(OH)D concentrations31 and

reducing colorectal adenoma risk32 are stronger among individuals

with the Gc2-encoding variant. Specifically, the effect of vitamin D

supplementation on adenoma risk was statistically significantly 18%

lower with each Gc2-encoding-rs4588 variant inherited (interaction

relative risk = 0.82, 95% CI 0.69-0.98, Pinteraction = .03).32 These find-

ings are consistent with ours, and collectively suggest that future trials

should consider potential differences in supplementation effects

according to Gc2 isoform. If confirmed, this effect modification could

be important clinically, and for public health, given the high prevalence

of the Gc2-encoding allele (40%-50% with European ancestry33) and

vitamin D concentrations <50 nmol/L in the US and Europe (26%-

76%, depending on age and country3,34).

The Gc2 isoform is encoded by the missense GC rs4588*C>A

variant resulting in a Threonine (Gc1)àLysine (Gc2) amino acid

substitution at residue 436.11 Although the physiologic conse-

quences of the isoforms have not been fully elucidated, the

Gc2-encoding variant is strongly associated with lower circulating

25(OH)D concentrations and higher odds of vitamin D insuffi-

ciency.35-37 This association may be mediated by lower GC protein

concentration (20%-30% lower among Gc2 homozygotes relative

to Gc1 homozygotes in studies that did not use the isoform-biased

monoclonal R&D assay24,38-40) since GC mediates the renal

reabsorption of 25(OH)D and prolongs its circulating half-life.41

Gc2 may also have lower 25(OH)D binding affinity than Gc1

isoforms,14 which, in addition to lower circulating GC, could lead to

higher levels of bioavailable and free 25(OH)D available to target

tissues.9,14,24,28 This may underlie the higher induction of vitamin

D target genes by 25(OH)D in cultured monocytes and colon

cancer cell lines with Gc2 relative to cells cultured with Gc1

isoforms.15,42 Importantly, normal and neoplastic colon tissues

express the vitamin D-receptor (VDR) and are able to locally con-

vert 25(OH)D to the VDR-activating 1,25(OH)2D form, which may

play an important role in CRC progression via modulating pathways

involved in cell proliferation, inflammation, angiogenesis and

metastasis.2,43 Taken together, we hypothesize that individuals

with the Gc2 isoform may particularly benefit from higher 25(OH)D

concentrations as these concentrations may lead to higher vitamin
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F IGURE 1 Adjusted cumulative incidence curves for CRC-specific
mortality according to vitamin D status—using Institute of Medicine
recommended 25-hydroxyvitamin D cut-points—in the combined
EPIC and CPS-II cohort (n = 1281) among, A, patients without Gc2
(GC rs4588*CC) and B, patients with Gc2 (GC rs4588*CA or AA).
Cumulative incidence curves were estimated using Fine and Gray's
competing-risks regression models adjusted for age at diagnosis
(continuous), year of diagnosis (continuous), sex, tumor site (colon,
rectum, missing/not specified), BMI (continuous), physical activity
(Quartiles 1-4, missing), smoking status (never, former, current,
missing), stage (I-IV, missing/not specified) and country. 25(OH)D
concentrations <30, 30 to <50 and ≥50 nmol/L categorized as
deficient, insufficient and sufficient, respectively, based on the

Institute of Medicine guidelines
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D-pathway activation and may be needed to compensate for Gc2

individuals’ reduced capacity to maintain adequate 25(OH)D

concentrations.

Supporting this hypothesis are other studies that reported a simi-

lar pattern of effect modification by Gc2 in relation to 25(OH)D and

risk of colorectal neoplasms. In a pooled US case-control study of indi-

viduals of European ancestry, 25(OH)D concentrations ≥50 relative to

<50 nmol/L were associated with lower risk of incident, sporadic colo-

rectal adenoma, but only among those with Gc2 (OR among Gc1-2/

Gc2-2 = 0.51, 95% CI 0.33-0.81; OR among Gc1-1 = 1.11, 95% CI

0.68-1.82; Pinteraction = .05).12 Additionally, in a pooled nested case-

control study using EPIC, CPS-II and Nurses’ Health Study data

(n = 3359), 25(OH)D concentrations ≥50 relative to <30 nmol/L were

associated with a statistically significant 53% lower CRC risk among

individuals with Gc2, but nonstatistically significant 12% lower risk

among individuals without Gc2 (Pheterogeneity = .01).13

Our study strengths include its prospective design, long follow-up,

and use of data from two independently conducted cohort studies of

participants in the US and 10 European countries. Additional strengths

include using seasonally adjusted 25(OH)D concentrations (limiting expo-

sure misclassification) and calibrating 25(OH)D measurements to a stan-

dard assay to permit estimating hazards using absolute clinical cut-points.

Our study has several limitations. The CPS-II sample size was

small; however, the direction of the HRs within strata and the pattern

of effect modification were consistent across studies, supporting the

validity and reproducibility of our findings. Larger studies are needed

to yield more precise estimates among individuals with the rare Gc2-2

genotype. There may have been some misclassification of vitamin D

status related to using the DiaSorin immunoassay; however, this assay

is one of the most commonly used in clinical settings, and is highly

concordant (r2 > 0.95) with liquid chromatography-mass spectrome-

try.44 Thus, we would expect this misclassification to be small and

comparable to that found in real-world clinical practice. Additionally,

while 25(OH)D was measured only once prior to diagnosis, estimated

within-person correlations for repeated 25(OH)D measures taken 1 to

11 years apart were 0.53 to 0.81 in other studies, suggesting that sin-

gle 25(OH)D measurements may be a relatively valid marker of long-

term vitamin D status.45,46 Furthermore, using 25(OH)D measure-

ments prior to diagnosis limits the concern for reverse causality (eg,

patients with aggressive tumors may be sicker and thus develop lower

25(OH)D concentrations near diagnosis) and our results were similar

when we excluded patients diagnosed within 3 years of 25(OH)D

measurement. We lacked data on CRC treatment, but adjusted for

year of cancer diagnosis and stratified by country to account for

potential temporal or geographic treatment differences. 25(OH)D may

be a marker of an overall healthier lifestyle that could influence sur-

vival; however, we adjusted for BMI, smoking and physical activity,

and further adjusting for factors, such as alcohol intake and education,

did not materially affect our results. Adjusting for these potential

shared risk factors for CRC risk and survival also reduces the possibil-

ity of a spurious association due to collider-stratification bias.47 We

did not collect tumor microenvironment data, such as degree and type

of tumor-infiltrating lymphocytes—important histologic prognostic

features of CRC.48 Given the putative immunomodulatory functions

of vitamin D,2,15 future research is warranted to investigate whether

and how vitamin D and GC isoforms may influence, or interact with,

immune cells in the CRC tumor microenvironment. Finally, our find-

ings among Europeans and US whites with European ancestry may

not be generalizable to other races or populations.

In conclusion, our findings, together with previous literature, sug-

gest that the association of prediagnostic 25(OH)D with mortality risk

among CRC patients may differ by common, inherited genotypes

encoding GC vitamin D-binding protein isoforms, such that CRC

patients with the Gc2 isoform may particularly benefit from a suffi-

cient vitamin D status.
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